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Millions of people use platforms such as Google Maps to search for routes to their desired destinations. Recently, researchers 
and mapping platforms have shown growing interest in optimizing routes for criteria other than travel time, e.g. simplicity, 
safety, and beauty. However, despite the ubiquity of algorithmic routing and its potential to define how millions of people 
move around the world, very li"le is known about the externalities that arise when adopting these new optimization criteria, 
e.g. potential redistribution of traffic to certain neighborhoods and increased route complexity (with its associated risks). In 
this paper, we undertake the first controlled examination of these externalities, doing so across multiple mapping platforms, 
alternative optimizations, and cities. We find, for example, that scenic routing (i.e. “beauty”-optimized routing) would 
remove vehicles from highways, greatly increase traffic around parks, and, in certain cases, do the same for high-income 
areas. Our results also highlight that the interaction between routing criteria and urban structure is complex and effects vary 
from city to city, an important consideration for the growing literature on alternative routing strategies. Finally, to address 
the lack of open implementations of alternative routing algorithms and controlled routing evaluation frameworks, we are 
releasing our alternative routing and evaluation platform with this paper. 
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1 INTRODUCTION 
The simple act of driving from one place to another is an incredibly common part of many people’s lives. However, it is also 
a surprisingly complex task: in many cases, there are seemingly countless routes between a given origin and destination 
pair. While the predominant focus of the literature and applications in the geographic routing domain has historically been 
on minimizing travel time or distance (e.g. [3,13]), researchers and practitioners have recently shown interest in alternative 
routing criteria. For instance, researchers have developed routing systems that generate “scenic” routes (e.g. [41,44,59]), 
simpler routes (e.g. [7,47]), and safer routes (e.g. [11,21,45]), among other alternative route optimizations (e.g. [23,25,48,60]). 
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Similarly, the routing platform Waze has begun to suggest routes, at least in Rio de Janeiro, that avoid areas deemed to have 
higher rates of violence [39], and Microsoft owns a patent for pedestrian routing that avoids “unsafe” areas based on crime 
and weather factors [51]. 

Despite this growing interest in alternative routing strategies, there has been no controlled evaluation of the externalities 
that arise when more traditional optimization criteria such as travel time are superseded by new optimization criteria such 
as safety or beauty. Evaluations of these new criteria have solely considered the direct trade-off with travel time or distance, 
e.g. increased travel time to achieve more scenic or safer routes. These evaluations, however, miss the externalities that may 
arise with these new criteria, externalities that may have significant social, economic, and safety implications. For instance, 
at the community level, these routing approaches may lead to increased or decreased traffic in certain areas. Additionally, 
at the route level, these approaches may lead to routes with more turns (directly contradicting user preferences [14,27], 
increasing driver stress [56] and cognitive load [16,36], and potentially decreasing safety [33,39]). Moreover, anecdotal 
evidence suggests that these externalities may be substantial. Consider, for instance, the widespread outcry about increased 
traffic and noise in previously out-of-the-way neighborhoods attributed to routing algorithm changes by Waze (e.g. 
[18,29,57]). 

In this paper, we aim to address this gap in the literature. To do so, we developed a controlled experimental routing 
platform and used this platform to investigate externalities that arise with three common approaches to alternative routing: 
scenic routing, safety routing, and simplicity routing. Specifically, examining routes from four cities – San Francisco, New 
York City, London, and Manilla – we ask the following research questions: 

 
RQ1: Does optimizing on alternative criteria in routing algorithms lead to route-level externalities such as more complex 

routes?  
RQ2: Does optimizing on alternative criteria in routing algorithms lead to community-level externalities such as increased 

or decreased traffic in certain areas? 
 
Additionally, as noted above, at least one routing platform (Waze) has already implemented alternative routing 

techniques [28], and Microsoft has a patent on similar approaches [51]. As such, we also saw an opportunity to use our 
experimental platform to better understand (and track) the criteria on which popular routing platforms are optimizing and 
to assess whether there are any externalities associated with these criteria. Thus, in the tradition of the algorithmic auditing 
literature (e.g. [2,4,53]), we also asked a third research question: 

 
RQ3: Is there evidence of alternative routing criteria being used by popular routing platforms? If so, what are the 

associated externalities? 
 
Overall, we find that there are large externalities associated with alternative optimization criteria and that these 

externalities could have substantial impacts on our communities and on the nature of the routes we use. For instance, our 
evidence suggests that scenic routing removes vehicles from highways (where city planners generally hope to route traffic) 
and redirects them to parks, popular areas, and, in some cases, wealthier areas. Scenic routing also creates substantially more 
complex routes involving more turns and intersections, both of which are known to make routes less desirable [14,24] and 
are associated with negative outcomes (e.g. traffic accidents [33], decreased usability [36,56]). Additionally, safety routing 
creates highly local but large impacts, redistributing traffic from pre-defined banned areas to highways and surrounding 
thoroughfares.  

Importantly, these externalities can arise even when increases in travel time appear minimal, providing evidence that 
externalities may be transparent under the standard paradigm for evaluating alternative routing approaches. Along the same 
lines, we also identified evidence that there is substantial variation in the externalities of a given algorithm across different 
cities and areas within a city. As such, our findings suggest that alternative routing research must involve carefully 
controlled evaluations across broadly diverse geographies to fully understand the costs and benefits of an algorithmic 
change. 

The algorithmic auditing component of our work reveals that Google Maps and MapQuest likely incorporate some non-
fastest-path optimizations in their routing algorithm (e.g. they generate simpler routes that spend more time on highways). 
However, we found no evidence (yet) of any major externalities relative to fastest-path routing, indicating, for instance, that 
Google Maps and MapQuest have not implemented features like Waze has in Rio de Janeiro and applied them at scale. Our 
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methods will allow us to easily monitor this result over time to assess if this changes (e.g. if one of these routing providers 
begins to route people around neighborhoods with higher crime rates). 

Finally, in the spirit of work such as Jurgens et al. [20], which also sought to standardize the evaluation of an algorithm 
family (geolocation inference algorithms), we are releasing our alternative routing and evaluation platform to facilitate 
improved evaluations and comparisons in this domain. In addition to allowing researchers to easily consider externalities 
when evaluating new routing algorithms, our platform also addresses issues in the alternative routing literature such as a 
lack of standards, very limited open alternative routing implementations, and inconsistent evaluation criteria. We have 
designed our platform to be completely open-source and easily extensible (e.g., to other optimization criteria, geographic 
scales, or externalities), with the hope of supporting future research and discussion of what is important in evaluating 
geographic vehicle routing. 

2 RELATED WORK 
In this section, we discuss research that motivated this work. This research emerges primarily from four areas: the large 
literature on alternative routing criteria, investigations into route preference, evaluation approaches in alternative routing, 
and the algorithms underlying commercial mapping platforms. Notably, though the research in this paper focuses on vehicle 
routing, we include in our discussion of related work approaches that have considered other modes of transportation as 
well. 

2.1 Routing Using Alternative Criteria 
While there is a large and growing literature on developing alternatives to shortest and fastest path routing, there has not 
yet been an effort to summarize this literature. As such, we conducted a survey of the literature and found that the alternative 
routing approaches largely fall into four categories: positive, negative, topological, and personalized (see Table 1 below for 
examples of each).  

The first two categories, positive and negative, are defined by the work of Golledge [14], which examines in part the 
impact of environmental features on route preferences (e.g. parks as positive, waste dumps as negative). The third category, 
topological, encompasses criteria such as simplicity or driving efficiency that can be derived from basic information about 
the road network. The final category is personalized routing, which involves learning the personal preferences of a driver 
(e.g. road or turn types) and designing routes that adhere to these preferences. 

Within the routing algorithms literature, positive routing often takes the form of “scenic” routing. Scenic routing has 
been implemented in a number of ways, e.g. reweighting edges based on an assessment of the “scenicness” of their 
surrounding area [55], adding waypoints from scenic areas near the shortest-path route [8,44,58], by generating many paths 
and then choosing the most scenic [41]. Additionally, there are also examples of optimizing for other positive criteria such 
as “happiness” and “quiet” [41] and projects peripheral to alternative routing that propose means of sensing criteria such as 
desirable smells [42] for future use in routing. 

Negative routing seeks to provide routes that avoid undesirable areas. Though Golledge used waste dumps as a proxy 
for this type of routing, the literature largely focuses on avoiding unsafe areas as defined by high incidences of violent crime 
[9,11,21,45]. Additional applications include avoiding dangerous weather [25] or other people [40]. Microsoft owns a patent 
[51] for pedestrian routing that avoids unsafe areas. Waze has already included the option to avoid high-crime areas, 
specifically in Rio de Janeiro, Brazil, ahead of the 2016 Olympics [39]. Waze also defaults to routing individuals around 

Table 1. A selection of categorized alternative routing papers. 

CATEGORY SUB-CATEGORIES AND PAPERS 
Positive Scenic (El Ali et al. 2013, McGookin et al. 2015; Quercia, Schifanella, and Aiello 2014; Runge et al. 

2016; Traunmueller et al. 2013; Zhang, Kawasaki, and Kawai 2008; Zheng et al. 2013) 
Negative High Crime (Elsmore et al. 2014; Fu, Lu, and Lu 2014; Kim, Cha, and Sandholm 2014; Shah et al. 

2011), Weather (Y. Li et al. 2014), People (Posti et al. 2014) 
Topological Simplicity (Duckham and Kulik 2003; Haque, Kulik, and Klippel 2006; Shao et al. 2014), Health 

(Sharker, Karimi, and Zgibor 2012), Efficiency (Ganti et al. 2010) 
Personalized Letchner, Krumm, and Horvitz 2006; Delling et al. 2015; Pang et al. 1995; Ziebart et al. 2008 
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certain settlements that are off-limits to Israelis [50]. These algorithms start with the shortest path and then either add 
waypoints as needed to reroute away from any areas deemed undesirable or reweight edges in these areas so that they are 
perceived as very high cost by the algorithm. 

Topological routing describes approaches that seek to optimize on some aspect of the road network itself (rather than 
the environment around the road network). The most common approach in the literature – other than the more traditional 
travel time and distance criteria – is some form of “simplicity” routing. At their core, simplicity routing approaches seek to 
model the ease with which a driver can follow a route, but they operationalize simplicity a number of different ways. 
Golledge [14], Manley et al. [27], and Li and Wu [24] modeled simplicity as minimizing the total number of turns. 
Algorithmic implementations of simplicity routing have taken the approach of modeling simplicity not just using turns, but 
as a function of the degree of each intersection and what action is taken at that intersection (i.e. go straight or turn) [7,16,47]. 

Finally, personalized routing approaches generally seek to learn and model an individual’s route preferences, i.e. when a 
user usually deviates from the fastest route and, in some cases, why s/he does so [5]. These models require extensive 
positioning (i.e. “GPS”) data from drivers in order to determine these preferences. A common approach is to learn implicit 
preferences for specific roads [23,60], though a recent approach by Delling et al. [5] explicitly learns the weights that each 
individual driver appears to give to various topological criteria (e.g., number of lanes, type of road). 

We included in our experiments the most common form of alternative routing approaches in each category, with the 
exception of personalized routing. More specifically: for positive routing, we implemented scenic routing; for negative 
routing, we implemented safety routing; and for topological routing, we implemented simplicity routing. We did not consider 
personalized routing because the open “GPS” trace datasets that would be required to include personalized routing in our 
experiments do not exist. 

2.2  Preferences for Alternative Criteria 
Researchers have long known that fastest path and shortest path are not the only criteria on which people want to optimize 
their routes. Much of this knowledge emerges from a variety of surveys and field studies. For instance, in an influential 
paper in the field of geography, Golledge [14] sought to quantify the importance of various criteria in route selection. 
Golledge identified that minimizing distance and travel time were the most important factors, but minimizing the number 
of turns and maximizing the scenic/aesthetic value were also key criteria that seemed to affect which route a participant 
selected. Li and Wu [24] surveyed commuters in Florida and provided support for the findings of Golledge, but also 
determined that safety is an important criterion. Similarly, Manley et al. [27] explored which criteria best explain actual 
routes taken by taxi drivers in London and found that a combination of shortest distance and fewest turns was most 
predictive of route choice. In addition to the preference for fewer turns, increased route complexity also raises safety 
concerns [33] and has been directly tied to greater cognitive loads [36] and stress [56] for the driver. This literature, though 
sparse, further motivates our choice of the three alternative criteria that we consider in this work (beauty, safety, and 
simplicity). 

2.3 Evaluation in Alternative Routing 
As is often the case in new computing research areas (e.g. geolocation inference [20]), evaluation in the alternative routing 
literature is a highly heterogeneous process that makes comparisons between approaches difficult. Evaluations typically 
involve examining routing in 1-2 cities using a small number of routes, with the only evaluation metric being travel time or 
distance. Our work is the first to our knowledge that explicitly considers additional evaluation criteria. In other words, this 
work sheds new light on the externalities, or side-effects, that arise with the use of alternative routing optimization criteria. 
Hints to the existence and importance of these externalities come from popular media, as discussed below. Like was the case 
in Jurgens et al. [20] for geolocation inference, our goal in this paper is to conduct experiments that afford a more direct and 
nuanced comparison between approaches, enabling a more robust understanding of the externalities associated with each 
approach. We also examine routing in four cities with diverse geographic contexts, affording a broader view of how 
geography and algorithms interact that provides important new insight. 

2.4 Commercial Mapping Platforms 
Since MapQuest began providing online directions in 1996, most online mapping platforms have defaulted to providing the 
“fastest” route between a given origin and destination. The exact details of the routing algorithms being used are proprietary, 
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often including whether or not these algorithms are optimizing on criteria other than just travel time. Some information, 
however, has been made public. Delling et al. [5] note that Microsoft Bing’s algorithm takes into account dozens of 
topological features such as the type of road, number of lanes, speed limit, and historical traffic data, and that the algorithm 
optimizes for simplicity as well by incorporating turn costs. Waze became infamous for especially accident-prone turns 
across traffic (an externality that likely arose as a result of optimizing more heavily than other commercial routing platforms 
on minimizing travel time) and has also since begun to explicitly optimize for simpler turns [39]. 

The introduction of the avoidance of “dangerous” areas in Rio de Janeiro by Waze [28] represents a large deviation from 
the fastest route paradigm. Waze also has incorporated avoidance of areas that cannot be entered legally by certain 
individuals, e.g. various settlements when driving in Israel [50]. Questions have been raised as to whether this type of safety 
routing merely enforces stereotypes and unfairly removes traffic (including potential retail customers) from poorer areas 
[28,39]. These concerns were also raised when a Microsoft patent that describes a means for helping pedestrians avoid areas 
where crime has been reported became public [15,33]. 

The Waze platform has also been accused of routing its users through many previously low-traffic neighborhoods. This 
has resulted in a number of externalities – including extensive frustration among residents (e.g. [18,29,57]) – and has led to 
calls for regulation of where mapping platforms can direct traffic [29]. Relatedly, a simulation study found that near-
universal usage of fastest path routing during high-traffic times led to the redistribution traffic away from highways and 
onto more local roads [52]. Our research extends our understanding of traffic redistribution externalities to the large 
literature on alternative routing criteria and can help inform the policy debate about mapping platform regulation. 

This research also builds on work that aims to provide some transparency to large-scale geographic systems that inform 
how we interact with the world, such as that by Soeller et al. [49], who developed a system for detecting personalization of 
political borders on Google Maps, and Chen et al. [4], who examined Uber surge pricing in San Francisco and Manhattan. 
This research takes a similar approach, but moves towards detecting the employment of alternative routing criteria (e.g. 
crime) rather than political borders or geographic biases in the sharing economy. 

3 METHODS AND FRAMEWORK 
In order to conduct a controlled evaluation of the externalities associated with alternative routing criteria, we needed three 
main components: the routing algorithms for each alternative criterion (i.e. beauty, safety, simplicity), a set of origin and 
destination pairs, and metrics to analyze the different externalities. For each origin-destination pair, and in aggregate across 
all origin-destination pairs for a city, we are then able to directly compare the routes generated by each algorithm. Below, 
we describe in detail our implementations of each of these components. 

3.1 Alternative Routing Algorithms 
We implemented three alternative routing approaches as well as a more traditional fastest-path algorithm to provide context 
when necessary. For our alternative approaches, we selected scenic, safety, and simplicity routing. As noted in Section 2.1, 
these three approaches have been validated by Golledge’s work and have been the subject of substantial interest in the 
alternative routing algorithm literature. There is no consensus in this literature, however, on how to operationalize criteria 
like “scenicness” (which is referred to as “beauty” in some literature), safety, or simplicity in a routing algorithm. 
Additionally, there is also a lack of open implementations of these and other alternative routing approaches. 

To address these issues, we developed our own framework that consists entirely of open-source software components 
and publicly-available data. We have released this framework for others to use and improve2. As noted above, the primary 
goals of the framework are (1) to make it easy for researchers and developers to consider externalities in their routing 
algorithm evaluations and (2) to provide a greater degree of standardization in routing algorithm evaluation more generally. 
Our framework is straightforward and has the benefit of being easily extensible to include additional alternative routing 
approaches and additional externality metrics not discussed in this paper (e.g. number of stop lights [14] or the diversity of 
neighborhoods along the route). 

																																																								
2 https://github.com/joh12041/route-externalities 
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For implementation of our alternative routing and fastest-path algorithms, our framework utilizes the bidirectional 
Dijkstra implementation provided by the open-source GraphHopper Java library 3 . GraphHopper includes standard 
pathfinding algorithms and imports OpenStreetMap4 road networks to build the underlying graph for routing. GraphHopper 
does not take traffic into account when determining the fastest path and instead bases travel time on road speed limits 
included in the OpenStreetMap data. All of our alternative routing approaches are included in our released framework.  

3.1.1 Scenic Routing. Our implementation of scenic routing is designed to replicate the approach described by Quercia 
et al. [41], except where required by the nature of our study. Broadly, Quercia et al. collect the top k shortest paths between 
two points and then select the path that optimizes for beauty based on data derived from Flickr photo tags. We chose this 
approach because it is scalable to many geographic regions and complements open-source approaches as it relies on public 
social media data. 

Quercia et al. base their underlying data on a LIWC-based [37] text analysis of the tags on geotagged Flickr photos. 
Specifically, they generate a 200m-by-200m grid across the city of interest in which each grid cell has a score based on its 
corresponding geotagged photos tags. They validated this approach with crowdsourced ground-truth beauty rankings. The 
notable variations from Quercia et al. in our system are as follows: our grid cells are slightly smaller and are not perfectly 
square (0.001 degree by 0.001 degree to necessarily speed up the algorithm) and we use Empath (Fast et al. [10], a validated 
open-source replacement for LIWC). In order to achieve better spatial coverage, we also add geotagged tweets5 to the Flickr 
[54] tags that are used to score each grid cell. Despite these changes, as validation we note that we see similar trade-offs in 
travel time to those reported by Quercia et al.  

In addition to defining scenicness, the Quercia et al. approach also needs a means of generating and ranking routes based 
on this alternative criterion. Quercia et al. use Eppstein’s algorithm, which finds the k-shortest paths between an origin and 
destination. We do the same through GraphHopper, but find the k fastest paths where we cap k at 1,000 as Quercia et al. 
demonstrated diminishing returns with larger k values (we also examined k=10,000 and found similar results to those 
presented below, but with greater effect sizes). As is done in Quercia et al, each route is scored as the average beauty score 
of the grid cells through which it passes. The route with the highest average beauty score is selected and returned. 

3.1.2 Safety Routing. We implement safety routing as closely as possible to descriptions of the technique used by Waze 
in Brazil. Though the specific details of the algorithm are not public, Waze notes that it avoids areas that have “higher-than-
average homicide, car robbery, or drug trafficking rates” [28]. We focus our efforts with respect to safety routing on New 
York City6 and San Francisco7, both of which provide public crime data. We include data from all of 2016, retaining only the 
crimes that overlap with the categories mentioned above. It was also noted that Waze disregarded areas that had high 
numbers of drivers under the assumption that their users considered these areas to be safe [28]. Lacking this (private) data, 
we implemented a proxy: we disregarded highways (speed limit greater than 70 kilometers per hour) when avoiding roads 
in these areas. 

Waze has not released the delineations of the areas in Rio de Janeiro that were designated “unsafe,” so we tested several 
thresholds for determining which areas to instruct our algorithm to avoid. Waze chose 25 areas in Rio de Janeiro that are 
described as varying in size between a block and a neighborhood [28]. As such, we aggregate the crime data to census tracts, 
which in cities are generally of a size between a few blocks and a neighborhood. We then define a threshold for the average 
number of crimes (normalized by the area of the census tract) such that a certain percentage of census tracts (i.e. those above 
the threshold) are marked as “unsafe.” We tested different variations of our threshold such that it removes 25%, 15%, 10%, 
5%, or 1% of census tracts8. We report results for the 10% threshold, finding the results for the other thresholds to be very 
similar. 

With a list of census tracts that exceeded the threshold for crime, we conducted safety routing in GraphHopper by using 
fastest path routing but avoiding all road segments that pass through these census tracts and do not have a speed limit 
greater than 70 kilometers per hour. Thus, a fastest path that does not pass through a blocked area will be unaffected while 

																																																								
3 https://github.com/graphhopper/graphhopper 
4 https://www.openstreetmap.org 
5 https://dev.twitter.com/streaming/overview 
6 http://www.nyc.gov/html/nypd/html/analysis_and_planning/historical_nyc_crime_data.shtml 
7 https://data.sfgov.org/ 
8 Actually operationalizing on all areas with “higher-than-average” crime would have blocked far too many census tracts – i.e. about a third of census tracts 
in each city. 
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a path that would have passed through a blocked area is rerouted to the fastest path that does not pass through a blocked 
area. 

3.1.3 Simplicity Routing. We implemented simplicity routing as described by Shao et al. [47]. This approach scores the 
simplicity of a route as the sum of the complexity of each intersection through which it passes. The complexity of an 
intersection is modeled based on the degree of the intersection (i.e. number of intersecting roads) and what action is to be 
taken by the driver (i.e. going straight or turning). We re-use the k-shortest-paths framework from scenic routing, but 
instead of selecting the path with the highest average beauty, our simplicity algorithm selects the path that has the lowest 
complexity score (i.e. the simplest route).  

3.2 External APIs 
We also included routes from two external mapping platforms9, Google and MapQuest, to address RQ3 (evidence of 
alternative criteria in routes from third-party platforms). We report results for routes that were gathered on weekdays from 
5-7:30pm local time for both platforms, a time of high traffic. We also gathered routes from 2-4:30am local time (weekdays) 
for low traffic directions, but do not report these results as we found little difference in the actual routes (i.e. ~98% overlap 
in routes, just different expected travel times). 

3.3 Origin-Destination Pairs 
In order to robustly compare the routes provided by different routing optimizations, we needed a set of origin-destination 
coordinate pairs in each of our four cities. Ideally, analysis of routes would be done with a representative sample of route 
requests (e.g. from Google Maps or MapQuest server logs). However, this type of data is not publicly available. To address 
this issue, we take two approaches: (1) we adopt a common practice in the literature (e.g. [16,46,61]) and test the algorithms 
on randomly-generated origin-destination pairs from across a city’s entire road network and (2) we also use publicly-
available taxi trip datasets where available. 

With respect to our randomly-generated dataset, we generate approximately 5000 origin-destination pairs each for San 
Francisco (California, USA), New York City (New York, USA), London (England), and Manila (Philippines). These cities were 
chosen to provide regional variation while still having sufficient English speakers to provide a good source of photo tags 
and tweets for our scenic routing algorithm (Empath is currently limited to English).  

To provide additional context when possible, we verified the validity of these randomly-selected pairs by analyzing two 
datasets of actual route origins and destinations based on taxi pick-ups and drop-offs, one in San Francisco [38] and the 
other in New York City10. As we discuss below, for our route-level externalities (RQ1), we see the same high-level findings 
in our taxi-sampled and randomly-generated datasets, and so we only report the results for the randomly-generated pairs. 
For our community-level externalities (RQ2), we reach varying conclusions depending on whether we use the taxi-sampled 
or randomly-generated origin-destination pairs. As such, we focus our discussion of RQ2 on San Francisco and New York 
City and discuss both sets of results. 

3.4 Externality Metrics 
The first set of externalities that we examine are attributes of a route that are not traditionally considered in evaluations but 
that have been found to be important in how people choose routes (i.e. RQ1, route-level externalities). First, we evaluate the 
complexity of the route, which we measure in several ways: number of turns [14,26], number of left (or right in London) 
turns [24], and the metric that we use in simplicity routing [7], which takes into account the number of intersections passed 
through by a route and what action is taken at each intersection (i.e. turn or go straight). We also measure the beauty of all 
of the routes [1,14,24] – another desired property of routes as determined by Golledge – doing so in the same way as 
described above for our algorithmic implementation of scenic routing. Finally, due to the public outcry around Waze 
redirecting traffic from the highways into smaller neighborhoods, we also measured the percentage of time that each route 
was on highways (i.e. “motorways” in GraphHopper, which are operationalized as roads with speed limits greater than 70 
kilometers per hour) and the percentage of time that each route was on slower neighborhood roads (i.e. streets below 
“secondary” in GraphHopper, as operationalized as roads with speed limits less than or equal to 40 kilometers per hour). For 

																																																								
9 Waze does not provide a public API. 
10 www.nyc.gov/html/tlc/html/about/trip_record_data.shtml 
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all of these metrics, we compute 99% confidence intervals by bootstrap resampling the routes 1000 times (i.e. sampling routes 
with replacement from the approximately 5000 generated for each algorithm and city). 

The second set of externalities relates to the community-level impact across all the routes considered (RQ2), with much 
of the motivation for these externalities arising from the public discourse around Waze [28,29], i.e. analysis of how traffic 
might be redistributed throughout a city and whether income appears to be a factor in this redistribution. We specifically 
focus on income because concerns have been raised that safety routing would also lead to the avoidance of poorer 
neighborhoods [15,28]. For these externalities, we focus on the cities in which we implemented safety routing (New York 
City and San Francisco, both of which also have detailed census data on income available11). We compute how income 
correlates with where an alternative routing algorithm redistributes traffic (as compared to traditional fastest-path 
algorithms). Specifically, for road segments that saw significantly increased traffic for a given alternative routing algorithm, 
we calculate the weighted average of household median income based on how much additional distance of roads passed 
through a given census tract as compared to the GraphHopper fastest algorithm. For example, if across all origin-destination 
pairs, there was an additional 8 km of routes in a census tract with a household median income of $60,000 and 2 km of routes 
in a census tract with a household median income of $50,000, then the weighted average would be $58,000 for roads that 
saw increased traffic. We do the same then for road segments that saw significantly less traffic and compare. We again 
compute 99% confidence intervals through bootstrap resampling with 1000 iterations on the origin-destination pairs. 

3.5 Calculating Metrics for Commercial Mapping Platforms 
The MapQuest and Google APIs provide the points that comprise the route that they return (i.e. latitude, longitude of enough 
points to accurately convey the geometry of the route). From these points, we can easily calculate the beauty of the MapQuest 
and Google routes through the same beauty grid-cell framework as used with GraphHopper. However, calculating the 
simplicity for these routes is less straightforward because the details of each intersection are not provided by Google and 
MapQuest. To overcome this problem, we use the map matching process developed by Newson and Krumm [34], which has 
also been implemented in GraphHopper12. This process converts the points into a corresponding path on the GraphHopper 
road network, from which simplicity can then be calculated as before. The Newsom and Krumm approach is not perfectly 
accurate, however, and so we enforce that the resulting matched route must be within 5% of the length of the original route 
in order to be considered in further analyses. Recall is generally around 85%, with the exception of Manila at 63%, which 
likely reflects differences in the underlying road networks of OpenStreetMap and the commercial mapping platforms. 

4 RESULTS 
In this section, we analyze and compare the routes (i.e. Google Fastest, MapQuest Fastest, GraphHopper Fastest, 
GraphHopper Scenic, GraphHopper Safe, GraphHopper Simple) according to the metrics described in the prior section. 

4.1 RQ1: Route-Level Externalities for Alternative Routing Approaches 
The routes corresponding to the San Francisco origin-destination pair featured in Figure 1 are illustrative of the type of 
route-level externalities that are seen between the different optimizations. In general, we see that the Google, MapQuest, 
and GraphHopper Simple paths share many of the same characteristics and are longer than the GraphHopper Fastest path, 
making more extensive use of highways. The GraphHopper Scenic route looks quite different from both the simplest and 
fastest routes, taking a more complicated path that passes through several popular areas such as Union Square before 
arriving at the destination. The GraphHopper Safe path also deviates substantially from the fastest path in order to 
circumvent the Tenderloin, an area of higher crime in San Francisco.  

These trends in the route-level externalities that arise as a result of different optimization criteria can be seen in Figure 
2, which shows the results of each route-level evaluation metric by Euclidean distance between the origin and destination 
(x-axes) and city (columns). We walk through Figure 2 in the sub-sections below and supplement the trends with statistics 
from Table 5 in the Appendix, which contains the actual values for each city and algorithm when the Euclidean distance is 
between 10 and 11 kilometers (i.e. one slice of the data in Figure 2). Of note, we present the externalities both normalized to 

																																																								
11 https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml 
12 https://github.com/graphhopper/map-matching 
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the natural baseline (e.g. GraphHopper Simple for simplicity measures) and also in absolute units when the units are readily 
interpretable (e.g. # of turns).  

4.1.1 Route Complexity. Optimizing on beauty or safety substantially increases the complexity of routes, which has 
implications for driver safety and usability. As can be seen in rows 1 and 2 of Figure 2, the average number of turns and 
therefore complexity of a route increases significantly when comparing the fastest path to either the scenic or safer paths. 
Specifically, for route distances of 10-11 kilometers, the scenic path takes an additional 4-5 turns over the fastest path and 
the safer path takes on average an additional turn.  Similar trends hold for the number of left turns (right turns in London) 
on a route (not shown) and the simplicity of a route (not shown, as measured by the number of intersections and action 
taken at each intersection). The simplest path is then an additional 2-3 turns shorter than the fastest path. For the safest 
path, this increase in complexity is the result of the added distance to circumvent a given area, but, for scenic routes, there 
are also significantly more steps per kilometer as well (third row of Figure 2).  

4.1.2 Beauty. The scenic route is about 2-3x more beautiful (row 4 of Figure 2) than the other routes produced with other 
optimization criteria depending on the city and Euclidean distance. Notably, neither simplicity nor safety seems to correlate 
significantly with increased or decreased beauty.  

4.1.3 Time on Highways and in Neighborhoods. Given concerns about the shift of vehicles away from highways and onto 
smaller neighborhood roads, rows 5 and 6 in Figure 2 consider the time spent by each route on each type of road. Scenic 
routes spend proportionally less time on the highway than the Google, MapQuest, or GraphHopper Fastest routes while 
GraphHopper Simple routes spend proportionally more time on the highway. Intuitively, this makes sense – many of the 
scenic spots in cities are not next to highways and taking a highway generally limits the number of intersections 
encountered. The magnitude of the differences varies across cities. On the low end, the scenic routes in London spend about 
0.5% less of their time on the highway than the fastest path. At the high end, in San Francisco, the scenic routes spend about 
9% less of the route on the highway than the fastest path, which corresponds to a 70% relative decrease in the amount of 
time spent on highways.  

Scenic routes spend a significantly greater proportion of their travel time on slower roads, i.e. smaller roads that generally 
go through residential neighborhoods, foreshadowing their community-level effects highlighted below. The specific 
proportion of time spent on these roads varies greatly by city, but the GraphHopper Fastest, Simple, and Safe routes on 
average spend similar proportions of time on these roads whereas scenic routes tend to spend 25-50% (relative) more of their 
travel time on these roads.  

	
Figure 1. Routes given by each routing algorithm for an example origin-destination pair in San Francisco. 
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Figure 2. Comparison of the route-level externalities (rows) by city (columns), distance between the origin and 
destination pair (x-axis), and routing algorithm (lines). 99% confidence intervals calculated through bootstrap 

resampling. Average travel time (bottom row) for Google Fastest and MapQuest Fastest routes are not shown because 
any differences between them and the GraphHopper routes likely arise from variation in the underlying data for 

calculating travel time. 
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4.2 RQ2: Community-Level Externalities of Alternative Routing Approaches 
Motivated by public concern around the redistribution of traffic and disproportionate impacts on poor (or wealthy) areas, 
we also examined community-level externalities that may arise from optimizing on alternative criteria. Examples of these 
externalities are visualized in Figures 3 and 4, which show the roads that see significantly more or less traffic in New York 
City and San Francisco for scenic, safety, and simplicity routing. We show both the results from the randomly-generated 
origin-destination pairs, which provide good coverage of the entire areas, and the taxi-sampled origin-destination pairs, 
which are more representative of actual route concentrations.  

4.2.1 Distribution of Traffic. For scenic routing, areas around parks see greatly increased traffic, as do popular tourist 
destinations and commercial districts. As can be seen in Figure 4, in San Francisco, the largest increases (>100 additional 

 
Figure 3. Comparison of alternative routing algorithms and GraphHopper Fastest algorithm, showing road segments 

with a significant change in the number of routes that pass over them across all origin-destination pairs for 
GraphHopper Scenic (left), Safe (middle), and Simple (right) routing in New York City. Results for random origin-

destination pairs are shown on top and taxi-sampled origin-destinations are shown on bottom. Blue road segments 
had more routes pass over them with the alternative routing algorithm as compared to the GraphHopper Fastest 

algorithm, and red road segments had fewer routes pass over them with the alternative routing algorithm as 
compared to GraphHopper Fastest. The specific color thresholds were set by quantiles with the constraint mentioned 

above that blue represents increased traffic and red represents decreased traffic. Darker colors indicate a greater 
magnitude in the difference in number of routes passing over a given road segment. Black slanted lines in the 

GraphHopper Safe maps indicate blocked areas in safety routing. 
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routes out of the approximately 5000 analyzed in the random origin-destination pairs) occur around Golden Gate Park, the 
Embarcadero (popular waterfront region), Glen Park, and Mission Street as it passes through the Mission District (popular 
commercial district). The roads that see corresponding drops in traffic are often nearby highways or similarly large 
thoroughfares, which have high speed limits but are not always scenic. In New York City (Figure 3), scenic routing led to 
the largest increases in traffic (again >100 out of the approximately 5000 routes in the random origin-destination pairs) on 
roads that border the rivers, the roads around Central Park, and in Williamsburg (a rapidly gentrifying neighborhood in 
Brooklyn). Again, it is largely highways and nearby thoroughfares where the greatest decreases in traffic are seen.  

The changes in traffic related to safety routing are much more localized, with increased traffic in order to circumvent the 
blocked census tracts being redirected to highways as well as more local roads that are immediately outside of the blocked 
areas. In San Francisco, the region that sees the largest decrease in traffic is the Tenderloin (a poorer neighborhood very 
close to downtown). In New York City, the taxi-generated routes show that the bulk of the traffic redistribution would occur 
to avoid high-crime areas in Manhattan, though the randomly-generated pairs indicate that regions of Brooklyn and Harlem 
would see traffic shifted to the highways as well. 

Simplicity routing leads to a large increase in the amount of traffic on highways, as they have fewer intersections, but 
does not appear to favor or avoid any specific areas.  

4.2.2 Income of Neighborhoods. Given concerns about safety routing criteria avoiding poorer neighborhoods, we also 
computed the weighted average of the household median income for roads that saw significantly increased or decreased 
traffic. The results are provided in Table 2.  

 
Figure 4. Comparison of alternative routing algorithms and GraphHopper Fastest algorithm, showing road segments 

with a significant change in the number of routes that pass over them across all origin-destination pairs for 
GraphHopper Scenic (left), Safe (middle), and Simple (right) routing in San Francisco. Results for random origin-

destination pairs are shown on top and taxi-sampled origin-destinations are shown on bottom. Blue road segments 
had more routes pass over them with the alternative routing algorithm as compared to the GraphHopper Fastest 

algorithm, and red road segments had fewer routes pass over them with the alternative routing algorithm as 
compared to GraphHopper Fastest. The specific color thresholds were set by quantiles with the constraint mentioned 

above that blue represents increased traffic and red represents decreased traffic. Darker colors indicate a greater 
magnitude in the difference in number of routes passing over a given road segment. Black slanted lines in the 

GraphHopper Safe maps indicate blocked areas in safety routing. 
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Across the different algorithms and cities, we see mixed but persuasive results that alternative optimization can lead to 
large and disparate externalities in the types of areas that receive increased or decreased traffic. Scenic routing favors 
wealthier areas in both cities. The taxi-sampled (and arguably therefore more representative of actual traffic patterns) origin-
destination pairs indicate that traffic on average moves towards wealthier regions - i.e. the average household median 
income of areas that see increased traffic is significantly higher than that of areas that see decreased traffic. For instance, in 
San Francisco for the taxi-sampled origin-destination pairs, the household median income of road segments that saw 
increased traffic was $97,639 while it was only $92,135 for road segments that saw decreased traffic. The randomly-sampled 
pairs in New York City indicate no significant correlation with traffic changes and income, though scenic routing causes 
traffic to move to less wealthy areas in San Francisco when using the randomly-sampled pairs.  

Safety routing results in mixed effects across the two cities. In San Francisco, for both the taxi-sampled and randomly-
generated origin-destination pairs, we see that safety routing moves traffic towards wealthier areas. The average household 
median income of areas that see increased traffic is $15,000 higher than that of the areas that see decreased traffic. In New 
York City, we see smaller disparities in the income of areas where traffic is redistributed, but the safety routing approach 
actually seems to cause traffic to shift on average towards less wealthy areas. Adding to the robustness of these results, we 
note that we see the same trends if we look at alternative metrics such as the proportion of increased and decreased traffic 
in areas with a household median income below a given threshold, e.g. $40,000. 

4.3 RQ3: Alternative Criteria in External Mapping Platforms 
Our results suggest that Google and MapQuest are likely incorporating simplicity as an optimization criterion in addition to 
travel time (like Bing [5]), generating simpler routes than would be expected under a pure fastest-path approach. For 
instance, Figure 2 shows that both Google and MapQuest provide routes that are similar to the GraphHopper Fastest and 
GraphHopper Simple routes. Interestingly, we calculated the percentage overlap between each combination of the various 
GraphHopper and external platform routes and found that MapQuest and Google are most similar to each other but that the 
highest overlap between Google or MapQuest and the GraphHopper routes is with GraphHopper Simple and not with 
GraphHopper Fastest.  

Importantly, however, we do not see evidence of Waze-style safety routing being applied in either platform, i.e. neither 
Google nor MapQuest appear to be excluding any neighborhoods from their routes. More generally, we also observe no 
major externalities relative to GraphHopper Fastest in either commercial platform, aside from an increase in simplicity. This 
can be seen in Figure 5, which shows the significant differences (at 99% confidence) in the number of routes that pass over 
a given road segment when comparing Google and MapQuest Fastest versus GraphHopper Fastest. While many roads show 
different levels of traffic, there is no clear geographic concentration in roads that are favored or avoided. Looking back at 
Figures 3 and 4, we see that scenic and safety routing resulted in areas in the city where many roads all saw an increase (e.g. 
a popular and pretty neighborhood in scenic routing) or a decrease in traffic (e.g. an “unsafe” area in safety routing). We do 
not see these patterns appear for Google or MapQuest in Figure 5. 

Table 2. Average household median income of road segments that see significantly increased or decreased traffic with 
each alternative optimization criteria. Using origin-destination pairs derived from taxi routes (i.e. reflective of actual 

travel patterns as opposed to randomly generated) often demonstrates a higher income disparity between the types of 
roads preferred or avoided by a given alternative optimization. City-specific differences are evident as well. 

Origin-Dest. 
Pairs 

Change in 
Traffic 

Household Median Income [99% Confidence Interval] 
Scenic Safe Simple 

New York City 
(Random) 

Increase $56,885 [55,484-57,555] $59,110 [59,076-59,379] $61,881 [61,838-62,160] 
Decrease $55,902 [55,745-56,233] $60,338 [59,256-62,561] $59,283 [58,992-59,961] 

New York City 
(Taxi) 

Increase $91,737 [90,997-92,590] $91,870 [91,485-92,505] $77,527 [74,021-78,618] 
Decrease $88,209 [87,377-89,607] $98,779 [96,982-101,834] $89,106 [87,877-91,635] 

San Francisco 
(Random) 

Increase $93,579 [93,024-93,891] $87,352 [86,844-87,498] $94,203 [93,868-94,383] 
Decrease $99,039 [98,505-100,387] $72,566 [70,590-73,357] $98,315 [98,002-98,858] 

San Francisco 
(Taxi) 

Increase $97,639 [97,077-98,528] $76,660 [74,690-77,841] $87,688 [87,543-88,184] 
Decrease $92,135 [91,147-94,439] $59,279 [56,607-60,863] $73,772 [70,242-75,430] 
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Figure 5. Comparison of third-party mapping platforms and GraphHopper Fastest algorithm, showing road segments 
with a significant change in the number of routes that pass over them across all origin-destination pairs for Google 

(left) and MapQuest (right) routing in San Francisco (top) and New York City (bottom). Results are shown for random 
origin-destination pairs. Blue road segments had more routes pass over them with the alternative routing algorithm 

as compared to the GraphHopper Fastest algorithm, and red road segments had fewer routes pass over them with the 
alternative routing algorithm as compared to GraphHopper Fastest. The specific color thresholds were set by 

quantiles with the constraint mentioned above that blue represents increased traffic and red represents decreased 
traffic. Darker colors indicate a greater magnitude in the difference in number of routes passing over a given road 

segment. 
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5 DISCUSSION 
In this section, we discuss the implications of the above findings for both the design of routing algorithms and for public 
policy.  

5.1 Societal Impacts of Alternative Routing 
A clear high-level finding in the above results is that alternative optimization criteria are associated with important 
externalities that have not been previously considered. For instance, our results suggest that scenic routing (and safety 
routing to a lesser degree) led to substantially more complex routes involving several more turns on average. Turning, and 
specifically turns against traffic, are known predictors of collisions [30] and are less preferred by users [14]. Additional turns 
also present a usability challenge, with more complex routes leading to greater cognitive load [36], increased driver stress 
[56], and a greater likelihood of wrong turns and increased driving distance [16]. 

We also found that, if widely deployed, alternative optimization criteria such as beauty and safety would very likely lead 
to some of the externalities that have been a matter of public discourse and frustration with Waze [18,28,29,57]. Scenic 
routing redistributes traffic from highways into parks, popular areas, and onto slower, neighborhood roads. This raises 
concerns that optimizing on beauty could further contribute to the frustrations about increased traffic in previously low-
trafficked neighborhoods [29]. These traffic increases on local roads have already led to calls by city council representatives 
in several cities to limit where mapping applications can direct their users [18]. Alongside the frustration and potential 
safety concerns of residents, high levels of traffic have also been tied to negative health outcomes [35]. 

By design, current safety routing approaches remove traffic from specific communities, which clearly could lead to 
economic and social impacts on those communities. While important to recognize, that this occurs in safety routing is not 
surprising. More surprising, however, is that traffic is not always just redistributed to surrounding (and likely similar) 
communities, but instead has far-reaching impacts and often is moved to highways and major thoroughfares that circumvent 
the larger area. Just as concerns have been raised about filter bubbles associated with the personalization of information 
consumption (e.g. [22,49]), safety routing may perform a similar function, allowing people to avoid areas that they do not 
want to see [28] and potentially shaping how we perceive the world [12]. A more balanced approach to safety routing might 
implement the avoidance of these areas only at times of low traffic and, during high-traffic times of the day, actually favor 
the “dangerous” areas so as to reduce the potential economic and social impacts of decreased traffic and visibility of these 
areas. Additionally, rather than focusing on high rates of crime, safety routing might instead focus on reducing the risk of 
collision by avoiding more dangerous driving maneuvers or crowded areas where accidents are more likely to occur. 

In this paper, we explored previously-proposed alternative routing criteria with the concern that these could lead to 
adverse and disparate impacts in specific areas. One can also imagine, though, alternative routing criteria that lead to a 
greater diversity of experiences for the driver and more uniform impact on neighborhoods. We invite further discussion of 
what other alternative criteria might be considered that would arguably lead to positive externalities. 

5.2 Towards Improved Routing Evaluations 
Our results also suggest that traditional routing algorithm evaluations are insufficient to capture the potential for 
externalities. Specifically, the sole focus of traditional routing algorithm evaluations has been on potential increases in travel-
time or distance, but this can hide important negative outcomes such as increased complexity (and its associated safety 
effects) and undesirable traffic patterns. Additionally, focusing just on travel-time and distance can lead to the conclusion 
that the trade-offs of an alternative optimization diminish rapidly with distance whereas we find externalities whose effects 
are relatively constant across distance. As can be seen in the final row of Figure 2, the increased travel time costs for the 
alternative optimizations diminish as the route distance increases (this matches what is seen by Quercia et al. [41] as well). 
However, this drop-off in magnitude of the trade-off is not nearly as immediate or does not occur when examining certain 
externalities, such as the number of turns or what types of roads comprise the routes. 

5.3 Algorithmic Auditing 
In this paper, we provided some of the first audits of routes generated by major mapping platforms. We did not find any 
evidence of major negative externalities associated with Google and MapQuest routes, with values for the externalities that 
we studied generally falling in the same range as those for GraphHopper Fastest and GraphHopper Simple. 
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As more commercial mapping platforms take steps like Waze has done to include notions of safety or other alternative 
optimizations in their algorithm, it is important that the research community continue to analyze the routes that these 
platforms are providing to ensure that any negative externalities are monitored. This is especially critical given the extent 
to which these platforms increasingly define the movement patterns of millions of people around the world. We have built 
our platform to accommodate the evaluation of routes from any external source by incorporating the map-matching 
component that converts a series of latitude-longitude coordinates to a route on the OpenStreetMap-based road network 
used internally by GraphHopper. Furthermore, the dataset of routes collected in the course of this research can serve as a 
baseline for future evaluations in order to detect changes in the routes provided by commercial mapping platforms. 

5.4 Geography and Algorithms 
In this research, we found that the externalities associated with a given routing algorithm varied across our four cities. For 
route-level externalities, we saw different effect sizes in each city, but the broad trends remained consistent. Among 
community-level externalities though, the nature of the trends changed from city to city. For instance, safety routing 
redistributed traffic to less wealthy areas in New York City and to more wealthy areas in San Francisco. The dependence of 
externalities on local geography extended to our choice of origin-destination pairs as well – i.e. randomly-generated vs. 
sampled from taxi routes. For route-level externalities, the choice of origin-destination pairs did not affect the trends, but 
the different sets of origin-destination pairs did lead to different conclusions for our examination of community-level 
externalities. 

These results indicate that the interaction between routing algorithms and geography, especially when evaluating 
community-level effects, is highly dependent on the underlying urban structure and on origin-destination patterns within 
that structure. Care should be taken when generalizing results from one or two cities to other settings. Performance and 
results that vary across geographic contexts (“geographic human-computer interaction” [17]) has been highlighted in other 
domains as well – e.g., highly skewed performance of geolocation algorithms in urban versus rural areas [19], decreased 
precision predicting human perceptions of urban landscapes in a city when images and labels from a more distant city were 
used to train the model [32], different levels of anonymity in location-based social networks in different regions [43], and 
varying effectiveness of the sharing economy depending on the socioeconomic status of a given area [53]. Especially given 
the ubiquity of these algorithms (e.g. Google Maps alone has over a billion unique monthly users [6]), expanding alternative 
routing research to incorporate more geographic contexts will be important for guiding the design of these algorithms and 
supporting continued public discourse. We hope that our evaluation platform can assist in this endeavor. 

6 FUTURE WORK AND LIMITATIONS 
One of the large questions raised by this work is how might we design alternative routing algorithms in such a way as to 
realize their promised benefits while reducing the associated negative externalities. The literature provides some hints that 
are worth exploring. For instance, the simplicity routing literature notes that hybrid, multi-criteria approaches (e.g. 
balancing how much weight is given to simplicity and how much is given to travel time) often greatly reduce the complexity 
of routes while incurring minimal time costs [16,47]. Further study could examine whether multi-criteria optimizations, or 
other approaches that might directly consider externalities as a cost, show promise for reducing externalities. While we 
mentioned one way in which safety routing might be implemented in a more balanced form in Section 5.1, further insight 
might be gleaned from the urban studies literature (e.g. Jane Jacobs). 

While the public discourse around Waze inspired some of this work, Waze currently does not provide a public API. 
Future work might pursue alternative means of collecting Waze routes, in part as an automatic means of detecting whether 
Waze routes are avoiding new areas. Furthermore, future work could also take advantage of open-source traffic data (e.g. 
[31]) to better understand the behavior of commercial mapping platform routes and explore how alternative routing 
algorithms react to changes in traffic as well. 

We chose four cities as our geographic context for this study and sought to include cities from around the world. 
However, as noted in the discussion of geography and algorithms in Section 5.4, it is very probable that different impacts 
would be seen in other geographic contexts, such as in new cities or in suburban and rural areas. An interesting line of work 
would involve categorizing different cities based on how these algorithms perform so as to build a better understanding of 
how to more effectively target areas for study. In other words, are there classes of urban structures in which routing 
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algorithms tend to have similar externalities? Of course, repeating our research in suburban and rural areas is also an 
important direction of future work. 

We view this research as a first step towards understanding the externalities associated with various routing criteria. We 
sought to design our alternative routing algorithms based on actively-developed open-source libraries (e.g. GraphHopper, 
map matching) or published and validated methods (e.g. Empath [10], the k-shortest path approach developed by Quercia et 
al. [41]). However, there are many parameters and possible approaches to alternative routing, which, if executed differently, 
might lead to different results. Similarly, we analyzed the routes provided by Google and MapQuest for an initial directions 
request, but it is possible that these routes would be updated as they are driven in order to take advantage of shortcuts off 
of the highways. Finally, we built on previously-published methods to generate our alternative routes, but incorporating in 
human assessments of the resultant routes would provide additional certainty that the routes would be perceived as more 
scenic or simpler or safer. 

7 CONCLUSION 
In this paper, we provide the first robust assessment of the externalities associated with different alternative optimization 
criteria in geographic vehicle routing. We show that these externalities are substantial and would not be detected by 
traditional routing evaluations. For instance, we find that scenic and safety routing lead to more complex routes – increasing 
accident risks and other negative effects – as well as substantially increased traffic in various communities. The community-
level impacts vary across different cities, however, demonstrating that evaluation across multiple geographic contexts is 
necessary in order to understand the impact of alternative routing approaches and highlighting the complex relationship 
between geography and algorithms more generally. We do not find evidence of negatives externalities arising in Google and 
MapQuest but release our evaluation platform so as to support continued evaluation and monitoring of commercial routing 
platforms. Finally, we discuss how algorithm designers might better balance the benefits of alternative optimization criteria 
with the externalities that can arise through their use. 
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A ADDITIONAL TABLES AND FIGURES 

Table 5. Rankings of the optimization criteria as well as values and associated 99% confidence intervals for origin-
destination pairs separated by a Euclidean distance of 10 kilometers (i.e. numbers shown by the lines in Figure 2 when 

straight-line distance = 10). Though the magnitudes vary city to city, the rankings are largely stable across cities. 
Abbreviations: GHSc = GraphHopper Scenic; GHSi = GraphHopper Simple; GHSa = GraphHopper Safe; GHF = 

GraphHopper Fastest; GF = Google Fastest; MF = MapQuest Fastest. 

Metric Value [99% Confidence Interval] for origin-destination pairs with a Euclidean-Distance of 10km 
London Manila San Francisco New York City 

# of Turns GHSc  
MF 
GHF  
GF 
GHSi 

20.0 [19.0-20.9] 
14.4 [13.6-15.3] 
14.2 [13.2-15.2] 
14.2 [13.1-15.2] 
11.6 [10.9-12.3] 

GHSc 
MF 
GF 
GHF 
GHSi 

18.8 [17.4-20.0] 
13.6 [12.7-14.7] 
11.5 [10.3-12.7] 
11.0 [10.1-12.1] 
9.36 [8.54-10.2] 

GHSc 
MF 
GHSa 
GHF 
GF 
GHSi 

14.0 [13.6-14.5] 
12.0 [11.6-12.5] 
11.3 [10.9-11.8] 
10.6 [10.2-11.0] 
10.4 [10.0-10.8] 
7.67 [7.36-7.96] 

GHSc 
MF 
GF 
GHSa 
GHF 
GHSi 

12.7 [12.2-13.3] 
12.4 [11.9-12.8] 
11.4 [10.9-12.2] 
10.1 [9.48-10.6] 
8.80 [8.32-9.30] 
6.80 [6.47-7.12] 

# of Turns per 
kilometer 

GHSc 
GHF 
MF 
GF 
GHSi 

1.37 [1.30-1.46] 
1.12 [1.04-1.20] 
1.09 [1.03-1.15] 
1.06 [0.99-1.13] 
0.79 [0.84-0.89] 

GHSc 
MF 
GHF 
GF 
GHSi 

1.18 [1.10-1.25] 
0.98 [0.91-1.05] 
0.81 [0.73-0.88] 
0.77 [0.69-0.85] 
0.57 [0.63-0.69] 

GHSc 
MF 
GHSa 
GHF 
GF 
GHSi 

1.07 [1.04-1.11] 
0.88 [0.85-0.92] 
0.86 [0.83-0.90] 
0.82 [0.79-0.86] 
0.73 [0.70-0.76] 
0.56 [0.54-0.59] 

GHSc 
MF 
GF 
GHSa 
GHF 
GHSi 

0.92 [0.88-0.97] 
0.91 [0.88-0.95] 
0.85 [0.80-0.90] 
0.79 [0.74-0.83] 
0.70 [0.66-0.74] 
0.49 [0.46-0.51] 

Simplicity 
(Normalized) 

GHSc 
GF 
GHF 
MF 
GHSi 

1.46 [1.41-1.52] 
1.17 [1.11-1.24] 
1.14 [1.09-1.20] 
1.07 [1.02-1.12] 
1.00 [0.95-1.04] 

GHSc 
GHF 
GF 
MF 
GHSi 

1.71 [1.60-1.81] 
1.16 [1.09-1.25] 
1.13 [1.05-1.21] 
1.12 [1.04-1.20] 
1.00 [0.94-1.07] 

GHSc 
GHSa 
GHF 
GF 
MF 
GHSi 

1.49 [1.46-1.52] 
1.28 [1.23-1.32] 
1.24 [1.20-1.29] 
1.08 [1.05-1.11] 
1.04 [1.01-1.07] 
1.00 [0.97-1.03] 

GHSc 
GHSa 
GHF 
GF 
MF 
GHSi 

1.54 [1.49-1.58] 
1.30 [1.25-1.36] 
1.24 [1.19-1.29] 
1.20 [1.14-1.26] 
1.08 [1.04-1.13] 
1.00 [0.96-1.04] 

Beauty 
(Normalized) 

GHSc 
MF 
GHF 
GHSi 
GF 

1.00 [0.94-1.06] 
0.36 [0.30-0.43] 
0.34 [0.30-0.39] 
0.34 [0.29-0.39] 
0.32 [0.26-0.37] 

GHSc 
GHF 
GHSi 
GF 
MF 

1.00 [0.95-1.05] 
0.41 [0.37-0.46] 
0.40 [0.35-0.45] 
0.38 [0.33-0.44] 
0.38 [0.33-0.43] 

GHSc 
GF 
MF 
GHSi 
GHSa 
GHF 

1.00 [0.97-1.04] 
0.53 [0.49-0.58] 
0.53 [0.49-0.58] 
0.50 [0.46-0.54] 
0.46 [0.43-0.49] 
0.45 [0.42-0.48] 

GHSc 
GHSi 
GHF 
GHSa 
MF 
GF 

1.00 [0.95-1.05] 
0.39 [0.35-0.44] 
0.39 [0.35-0.43] 
0.38 [0.34-0.42] 
0.34 [0.30-0.38] 
0.31 [0.27-0.36] 

% Time Spent 
on Roads > 45 
mph 

MF 
GF 
GHSi 
GHF 
GHSc 

2.84 [1.24-4.74] 
2.76 [1.18-4.91] 
2.54 [1.18-4.32] 
2.07 [0.74-3.73] 
1.50 [0.63-2.51] 

GHSi 
GF 
GHF 
MF 
GHSc 

17.5 [13.1-22.5] 
13.5 [9.56-17.4] 
11.9 [8.31-16.3] 
10.9 [7.70-14.6] 
6.18 [4.08-8.54] 

GHSi 
MF 
GHF 
GF 
GHSa 
GHSc 

15.0 [13.0-17.1] 
14.0 [12.2-16.1] 
13.5 [11.7-15.4] 
13.5 [11.3-15.6] 
13.3 [11.1-15.5] 
4.24 [3.19-5.41] 

GHSi 
MF 
GF 
GHF 
GHSa 
GHSc 

27.8 [24.7-31.0] 
23.6 [20.5-26.4] 
21.4 [18.8-24.5] 
20.5 [17.6-23.7] 
20.5 [17.5-23.6] 
15.3 [13.0-18.0] 

% Time Spent 
on Roads < 
25mph 

GF 
GHSc 
MF 
GHSi 
GHF 

26.7 [23.0-30.4] 
21.8 [19.2-24.8] 
17.3 [14.4-20.4] 
16.4 [13.6-19.2] 
14.8 [12.4-17.6] 

GHSc 
GF 
GHSi 
MF 
GHF 

17.3 [14.8-19.9] 
17.1 [14.3-20.1] 
14.1 [11.1-17.4] 
13.1 [10.6-16.0] 
11.5 [9.23-13.9] 

GF 
GHSc 
MF 
GHF 
GHSa 
GHSi 

26.7 [24.5-29.0] 
24.2 [22.6-25.7] 
23.3 [21.2-25.3] 
16.1 [15.0-17.4] 
16.1 [14.9-17.4] 
16.0 [14.6-17.5] 

GF 
MF 
GHSc 
GHSi 
GHSa 
GHF 

30.6 [27.8-33.5] 
18.4 [16.6-20.4] 
15.7 [14.5-17.0] 
12.9 [11.5-14.4] 
12.1 [10.9-13.4] 
9.95 [8.89-11.1] 

	
Table 6. Total number of user-generated contributions (i.e. photos, tweets) for each city used in determination of 

beauty scores for scenic routing. Flickr photos from YFCC100M and Twitter tweets collected from May-August 2015. 

Dataset London Manila San Francisco New York City 
Flickr [# photos] 1,320,553 29,530 776,790 1,127,440 
Twitter [# tweets] 262,216 328,179 200,609 685,172 
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